
Zvi Gutterman

Chief Technology Officer
with

Benny Pinkas

Tzachy Reinman

Open to Attack
Vulnerabilities of the Linux Random Number Generator

Black Hat 2006

 - Proprietary & Confidential -

Zvi Gutterman

CTO, Safend

Previously a chief architect in the IP infrastructure group for ECTEL
(NASDAQ:ECTX) and an officer in the Israeli Defense Forces (IDF)
Elite Intelligence unit.

Master's and Bachelor's degrees in Computer Science from the
Israeli Institute of Technology. Ph.D. candidate at the Hebrew
University of Jerusalem, focusing on security, network protocols, and
software engineering.

 - Proprietary & Confidential -

Safend

Safend is a leading provider of innovative endpoint security solutions
that protect against corporate data leakage and penetration via
physical and wireless ports.

Safend Auditor and Safend Protector deliver complete visibility and
granular control over all enterprise endpoints. Safend's robust, ultra-
secure solutions are intuitive to manage, almost impossible to
circumvent, and guarantee connectivity and productivity, without
sacrificing security.

For more information, visit www.safend.com.

 - Proprietary & Confidential -

Pseudo-Random-Number-Generator
(PRNG)

Elementary and critical component in many cryptographic protocols

Usually:
“… Alice picks key K at random …”
In practice looks like

random.nextBytes(bytes);
session_id = digest.digest(bytes);

• Which is equal to
session_id = md5(get next 16 random bytes)

 - Proprietary & Confidential -

If the PRNG is predictable the cryptosystem is not secure

Demonstrated in -

Netscape SSL [GoldbergWagner 96]
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Apache session-id’s [GuttermanMalkhi 05]
http://www.gutterman.net/publications/2005/02/hold_your_sessions_an_attack_o.html

 - Proprietary & Confidential -

General PRNG Scheme

0111
1

1
100
00

0000

0
Properties:

1. Pseudo-randomness
Output bits are indistinguishable from uniform random stream

2. Forward security
Adversary revealing State(t) does not learn anything about State(t-1)

Stateseed

 - Proprietary & Confidential -

Entropy based PRNG (EPRNG)

entropy
0111
1

1
100
00

0000

0
Properties:

1. Pseudo-randomness
Output bits are indistinguishable from uniform random stream

2. Forward security
Adversary revealing State(t) does not learn anything about State(t-1)

3. Backward security
Adversary revealing State(t) does not learn anything about State(t+k)

State

System
Entropy

 - Proprietary & Confidential -

Entropy Based PRNG (2)

Statei Statei+1 Statei+2 Statei+3 ...

Outputi Outputi+1 Outputi+2 Outputi+3 ...

entropy

...

...

entropy

 - Proprietary & Confidential -

Our Research Results:
Breaking the Linux PRNG
Outline of the process:

Break-in and get the PRNG state
Buffer overflow
Physical access
…

Run our Forward security attack and learn past PRNG outputs
Use the past outputs to study past PGP Keys, SSL keys, …

Statei-2 Statei-1 Statei Statei+1 ...

Outputi-2 Outputi-1 Outputi Outputi+1 ...

entropy

...

...

entropy

Break-in

 - Proprietary & Confidential -

Outline

PRNG and Entropy PRNG

Previous work
Entropy based PRNGs

OS based PRNGs

Barak and Halevi construction [CCS 05]

Analysis of Linux PRNG

Attacks
Denial of Service (DOS)

OpenWRT

Forward Security Cryptanalysis

Entropy measurements

Conclusions and recommendations

PRNGs: Previous Work

 - Proprietary & Confidential -

Entropy Based PRNGs

Ad-hoc structures

No proved theory

Examples
Yarrow [Kelsey, Schneier, Ferguson 99]

CryptLib [Gutmann 98]

PGP [Zimmermann 95]

RSAREF [RSA Labs 94]

X9.17 [NIST 92]

 - Proprietary & Confidential -

OS Based PRNG’s

FreeBSD [Murray 02]
Yarrow with AES

 - Proprietary & Confidential -

OS Based PRNG’s (2)

Windows
Kernel based CryptGenRandom

Entropy based

Proprietary unpublished algorithm

US patent 5,778,069

 - Proprietary & Confidential -

Barak and Halevy CCS ’05
Provide a rigorous definition of entropy based PRNGs
Describe a generic construction of entropy based PRNG from a
pseudo-random generator and an extractor.

Structure:
• Part of the PRNG output is used as the new state.
• System entropy is input to the extractor.
• The extractor’s output is xored to the state.

Proved security as long as underlying blocks are secure
• Forward + Backward + Pseudo-randomness

Example:
• Use AES as the PRNG, HMAC-SHA1 as the extractor.

Analysis of Linux PRNG

 - Proprietary & Confidential -

Linux PRNG (LRNG)
Implemented in the kernel
Entropy based PRNG
Started by Theodore Ts’o in 1994
Engineering

Complex structure
Hundreds of patches to date
Changes on a weekly base

Used by many applications
TCP, PGP, SSL, S/MIME, …

 - Proprietary & Confidential -

Two Interfaces
Kernel interface – get_random_bytes (non-blocking)

User interfaces –
/dev/random (blocking)
/dev/urandom (non-blocking)

/dev/urandom - returns bytes
regardless of the amount of
entropy available. It does not
block on a read request due to
lack of entropy.

/dev/random - returns random
bytes only when sufficient
amount of entropy has been
collected. If there is no entropy
to produce the requested
number of bytes, /dev/random
blocks until more entropy can be
obtained.

http://bama.ua.edu/cgi-bin/man-cgi?urandom+7D

 - Proprietary & Confidential -

Entropy Estimation
A counter estimates the physical entropy in the LRNG

Increased on entropy addition

Decreased on data extraction

blocking and non-blocking interfaces
Blocking interface does not provide output when entropy estimation
reaches zero

Non-blocking interface always provides output

Blocking interface is “considered more secure”

No guaranteed relation between the estimation and output bits

 - Proprietary & Confidential -

On Reverse Engineering
The Linux PRNG is part of the Linux kernel and hence an open
source
The entire code is 2500 lines written in C
However

Kernel code – measurement interference
Hundreds of code patches over the years
Very unclear, complex structure

Our tools
Static analysis
Kernel modification

We implemented and confirmed our findings with a user mode
simulator (http://www.cs.huji.ac.il/~reinman/)

 - Proprietary & Confidential -

LRNG Structure

C – entropy collection
A – entropy addition
E – data extraction

Entropy Sources

keyboard

mouse

interrupts

disk

Primary
Entropy

Pool
512 bytes

Secondary
128 Bytes

Urandom
128 Bytes

C A

E

/dev /random

blockingE

E

E A

A

A

A

A

A

/dev /urandom
get_random_bytes

non -blocking

 - Proprietary & Confidential -

Entropy Collection
Asynchronous

Events are represented by two 32-bit words
Event type

• E.g., mouse press, keyboard value
Event time in milliseconds from up time

Bad news:
Actual entropy in every event is very limited

• e.g., a common PC with single IDE drive
has a fixed event type for I/O

Good news:
There are many of these …

 - Proprietary & Confidential -

Entropy Addition

Cyclic pool, generalization
of LFSR
Different polynomial for
each pool size

A is a known matrix

Polynomial:
X32+X26+X20+X14+X7+X+1

Addition algorithm:
g – input, j – current pool position

Pool :
g

?A?

j

J
+
1

J
+
7

J+
1
4

J+
2
0

J+
26

 - Proprietary & Confidential -

Extraction
0 16 31
Pool :

SHA-1

0 16 31
Pool :

i

0 16 31

Pool :
ii-2 i-1

(SHA-1)’

(SHA-1)’

Folding

output

...
...

After extraction:

1. Set: i Ã i-1

2. Update entropy-estimation

add

add

Attacks

 Denial of Service (DOS)

 OpenWRT

 Forward Security Cryptanalysis

 - Proprietary & Confidential -

Denial of Service Attack

LRNG does not limit usage of /dev/random
/dev/random blocks whenever entropy estimation reaches zero (~
consumption > entropy)
Internal Attack

Read and drop bytes from /dev/random
• All others consumers will starve

Because /dev/random and /dev/urandom share the primary pool reading
from /dev/urandom will also cause starvation

External Attack
/dev/urandom is also used for TCP sequence numbers (to avoid spoofing
attacks)
But /dev/urandom also shares the primary pool with /dev/random
Hence, remote attack:
• Generate as many TCP connections and empty the primary pool
• Same result: Starvation

Solution: Quota

 - Proprietary & Confidential -

OpenWRT Platform

Linux distribution for wireless routers

Implements SSL termination, SSH server, wireless encryption,
…

No hard-drive entropy

No state saving between reboots!
Initial state depends on boot time only

Very weak

 - Proprietary & Confidential -

Cryptanalysis
Based on the entropy extraction process we were able to
mount an attack on the LRNG forward security

Input: state in stage n
Output: state in stage n-1

output in stage n-1
Limitation
• Assuming that no entropy

was added during the extraction

Brute Force
21024 computations per stage (32 x 4 x 8 bits)

 - Proprietary & Confidential -

Cryptanalysis (2)
Generic Attack

Each stage changes three words (i, i-1,i-2)

• Given Pool(t), check all 296 possibilities for Pool(t-1)

0 16 31
Pool :

SHA-1

0 16 31
Pool :

i

0 16 31

Pool :
ii-2 i-1

(SHA-1)’

(SHA-1)’

Folding

output

...
...

Pool(t)

Pool(t-1)

 - Proprietary & Confidential -

Assimilation problem

Searching for Pool(t-1) we get the real result together with false
positives

Probability of having k false positive is:

t t-1 t-2 t-3

…

 - Proprietary & Confidential -

Assimilation problem (2)
Let di be the number of false positives
 at time t-i (d0=0)

Let’s compute E(d1):

And in the general case we get:

 - Proprietary & Confidential -

Assimilation problem (3)
We define a new variable zi=di-i
A martingale is a sequence of random variables X0,X1,X2,… which
satisfies the relation:

Martingale property
E(Xi) =E(X0)

Zi is a martingale
Hence, we get E(Zi)=E(Z0)=0
Therefore, E(di)=i

With very small variance

 - Proprietary & Confidential -

Assimilation problem (4)
Not really an issue because the growth rate is linear with the
number of reverse steps

Final candidate validation should be done using higher
protocol

 - Proprietary & Confidential -

Cryptanalysis (3)
In certain cases (18 out of 32)
we can mount a 264 attack

Depends on current pointer
position

Example demonstrates one such
index where we only need 264

computations

We get the same assimilation
problem

0 16 31
Pool :

SHA-1

0 16 31
Pool :

i

0 16 31

Pool :

ii-2i-1

(SHA-1)’

(SHA-1)’

Folding

output

 - Proprietary & Confidential -

Entropy Measurements
Each addition is made of two
32-bit words:

Event type (mouse, keyboard, HD, interrupts)

Event time

Maximal unknown bits per event type

Measuring entropy of HD event times over 140,000 events on
an idle server resulted with entropy of H:=1.028 bits per event

 - Proprietary & Confidential -

Conclusions
We presented an analysis of the Linux PRNG

Limitations of our analysis
Unique hardware

• e.g., SMP
Different distributions

• It’s an open source …

296 and 264 Cryptanalysis of the LRNG forward security

Entropy measurements

OpenWRT use case

 - Proprietary & Confidential -

Recommendations
Fixing the Linux PRNG

Solve the forward security problem

Replace the Entropy estimation with a different criteria (based on
time or size)

Implementing random-bits quota
Avoiding denial of service attacks

Adopting the Barak-Halevi construction
Proved security

Simple to implement

 - Proprietary & Confidential -

Recommendations (2)
Security engineering

Open source is not a synonym
for well documented or secured systems

Better framework needed

Security related code must be treated different

Better documentation

Better validation process

 - Proprietary & Confidential -

Questions?

Contact information: Zvi Gutterman

zvi@safend.com

www.safend.com

Download recent research results at:

gutterman.net/blog/

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

